
 173 

 
 

VI. Évfolyam 2. szám - 2011. június 

 
Harmati István  
harmati@iit.bme.hu 

 
Kisfaludi Péter 

kisfaludi.peter@gmail.com  
 
 
 

MILITARY STRATEGY PLANNING FOR AUTONOMOUS GROUND 
VEHICLES 

 
 

Absztrakt 
 

Több ágenst tartalmazó katonai robotrendszer koordinációs problémája 
játékelméleti keretek között hatékonyan vizsgálható. A koordinációs probléma 
megoldásához a mesterséges intelligencia módszerek eszköztára, így például a 
megerősítéses tanulás is alkalmazható. A cikkben bemutatásra kerül egy olyan, 
megerősítéses tanuláson alapuló stratégiatervezési módszer, amely képes több 
ágenst tartalmazó ember nélküli földi járművek esetén az ágensek számára 
optimális stratégiát kialakítani. 
 
The coordination problem within a multiagent robot system can be efficiently 
examined in a game-theoretic framework. The solution for the coordination 
problem can be found using artificial intelligence methods, for example with 
reinforcement learning. In this article, a reinforcement learning based method is 
described, which is capable of finding an optimal strategy for a group of 
Unmanned Ground Vehicle (UGV). 
 
Kulcsszavak: megerősítéses tanulás, gépi tanulás, multiágens stratégiatervezés, 
multiágens robotrendszer ~ reinforcement learning, machine learning, multiagent 
strategy planning, multiagent robot system  
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INTRODUCTION 
 

Military strategy planning plays important role in battles since ancient ages. The scientific 
research of this discipline arrived in a new era since computers and autonomous military 
vehicles (robots) had appeared on the battle field. It is especially true if one considers that 
strategies can be simulated and analyzed by computing science. Artificial Intelligence (AI) 
and game theoretic methods in computer games has also impact on the state-of-the-art 
military strategies. Military strategies consider and coordinate such tactical operation as for 
example task assignment, pursuit-evasion games, formation control. Successful mission 
requires cooperation between agents (UGVs) to reach global (shared) goal. At the same time 
individual agents (or a group of agents) should execute different, coordinated actions in order 
to achieve the global and shared goal for the team. Since optimal maneuver planning is too 
complicated, it is a reasonable approach to decompose the mission planning into different 
levels. On higher level, the strategy defines a global goal to every team member or groups of 
team members. It also means that individual military goal is defined for each team mate (or 
group of team mates) by the strategic level. UGVs should solve their task individually on 
tactical level. This often includes path planning and collision avoidance algorithms [1]. Based 
on the planned paths, low level control method should provide control signal to the UGVs via 
actuator. For example, if UGVs are represented by tanks, low level control signals are the 
velocities of the wheels on the right hand side and the left hand side.  The advantage of 
splitting up the problem is that the group level computations can be done in a parallel manner, 
and the complexity of these several computations is less than the complexity of solving the 
coordination problem for the whole team. 

There are several potential methods which attempts to reach optimal strategies to the 
troops [2]. Since the problem is very complicated, they are mostly based on heuristics, soft 
computing methods [3], [4] e.g. fuzzy systems, neural network, swarm intelligence, 
reinforcement learning) or hard computing methods which provide at least sub-optimal 
solutions (e.g. game theory [5], [2], [6]).    

In this paper, we propose reinforcement learning method for high level military strategy 
planning. Unfortunately, classical reinforcement learning techniques [7], [8] do not provide 
straightforward solution for team games and thus for military operation planning. On the other 
hand, these techniques are performing well in their domain (for example in single agent 
frameworks), that is why one can hope that an extension of these techniques to team games 
will solve the coordination problem emerging in military operations planning with still a good 
performance. In the reinforcement learning methods, we apply WoLF principle [7]. This is a 
solution for efficient reinforcement learning in a multiagent framework, and this method is 
able to find a locally optimal solution in the multiagent domain, and it is also proven that by 
applying the principle to reinforcement learning methods these methods become convergent, 
which is an important issue during military operations planning. In this paper, we propose a 
possible extension of the single agent framework to a multiagent domain and match it to 
military operations planning. As a result, military operation planning using hierarchical 
reinforcement learning is introduced. 

Another problem emerging in the domain of team games is that the state space and the 
action space can easily grow to an intractable level, and therefore some simplifications should 
be applied to them to make the learning algorithms tractable (this means that without the 
simplifications, the algorithms can still find a solution in the original space but the 
computation time will become intractable). One way of simplification is to discretize the state 
and the action space. Discretization reduces the size of the space to a manageable size, but at 
the cost of losing information, because after discretization, two previously distinct states or 
actions can become indistinguishable. Another way of reducing the size of the state and action 
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space is to create a simpler model of the environment (for example, by omitting existent but 
unimportant features of the environment), thus reducing the complexity (and size) of the state 
and action space.  

The methods for strategy planning for military operations are analyzed in a simplified 
demonstration domain. In this domain, two teams of tanks fight against each other. The tanks 
are able to move on the map and they can shoot at each other. On the demonstration domain, 
the map is divided to cells and these cells make up a standard grid. The allowed movement of 
the tanks is reduced to the four main directions in this grid. The demonstration game 
simulates the battle in discrete timesteps, the units can move from a cell to an adjacent cell in 
a timestep or they can shoot. The team that succeeds in destroying all the units in the enemy’s 
team is declared the winner. The multiagent coordination methods are tested and evaluated in 
this simplified demonstration domain. 

The paper is organized as follows. In Section 2, we summarize the theoretical background 
of multiagent systems, the main results of reinforcement learning methods. Section 3 is 
devoted to framework used in our investigation and to a specific solution based on 
reinforcement learning approach is established. Section 4 demonstrates the proposed method 
via an illustrative example. Finally, we draw the conclusions in Section 5. 

 
THEORETICAL BACKGROUND 

 
In the field of artificial intelligence and machine learning, agents play a central role. Agent 

is an entity which can have perceptions from its environment and can change the state of its 
environment by means of its actuators [3]. The agent generally consists of three main parts: 
perception, reasoning and actuator, where the reasoning part is responsible for deciding which 
action the agent should execute based on the actual and previous perceptions. The schematic 
of an agent is seen on Figure 1. In our description, UGVs can be considered as agents. In 
multiagent environment one should coordinate their action for successful mission (winning 
the battle). 

Environment
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actions
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Agent N
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actions

.

.

.

 

1. figure. Multiagent concept 
 

In this paper, we develop a cooperative multiagent control on the base of reinforcement 
learning. Reinforcement learning is a machine learning technique capable of learning an 
optimal strategy based on reward signals (see Figure 2). A strategy in this context means a 
probabilistic distribution over the agent’s available actions in a given state. A reinforcement 
learning problem can be described with the agent’s state space and action space. Generally, 
the actions available to the agent can be different for different states, but usually it is assumed 
that the available actions are the same for all states. The reward is a signal that is distinct from 
the state of the environment and the agent is capable of treating the reward signal and the state 
of the environment distinctly.  
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2. figure. Reinforcement learning 
 

Thus the learning agent has two inputs: one input is the state of the environment, the other 
is the actual value of the reward signal. A reward is optionally provided to the agent after 
executing an action; it is possible that the agent does not receive a feedback (reward) about its 
executed action. The goal of the learning agent is to maximize the value of the reward signal 
on the long run. As there are no correct state-action pairs provided to the agent (unlike in 
supervised learning), the agent can only learn by executing actions in the available states and 
observing the reward for each state action pair. This also means that the agent should 
somehow explore its environment, because only after suitably exploring the environment can 
the agent be sure to have found a strategy which maximizes the long term reward.  

Several techniques exists which ensures suitable exploration of the state space, one of them 
(which is used in the proposed solution) is called the ε-greedy exploration. The ε-greedy 
exploration makes the agent execute a random action with low probability that is independent 
of the current strategy. This way no action will be excluded in any state from execution, and 
the agent has the chance to explore the whole state space.  

 
MILITARY STRATEGY WITH REINFORCEMENT LEARNING 

 
The proposed solution for military operations uses an extension of a single agent 

reinforcement learning algorithm suitable for stochastic games. The chosen reinforcement 
learning technique is the GraWoLF technique, it is extended to the domain of team games by 
using the aggregated agent concept, and the complexity of the solution is reduced by defining 
a hierarchy between the agents.  

Let us start the discussion with some definition. The domain of team games is a subset of 
stochastic games (stochastic games are multiagent, multistate games [9]). In team games, the 
agents are partitioned into an arbitrary number of teams and every team has its own reward 
scheme and goal. The goal and reward are common amongst the agents of the same team, 
meaning that during learning using a reinforcement learning technique only a single reward 
signal is provided to the whole team, which all agents can perceive. The agents in the same 
team are allowed to execute different actions and communication between them is also 
allowed. Communication makes coordination (executing such individual actions that result in 
better expected reward than executing actions without coordination) between team members 
possible. The reward signal is dependant on the performance of the team as a whole. 

Military operations belong to the domain of team games, because in a military operation, 
there are usually more units controlled by the same team trying to achieve a common goal, 
and the adversary team (or teams) is trying to prevent the team from doing so.  

Formally, a team game can be described as a tuple (N, S, A1…N, T, R1…N), where 
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 N is the number of teams 

 S is the set of states in the game 

 Ai is the set of actions available for team i 

 T is the transition function 
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 Ri is the reward function for team i 
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The policy of the agent determines with what probability the agent chooses a particular 
action from its available action set in a given state. Formally, a policy is a mapping from state 
and action pairs to a probability. The policy returns the probability of taking a particular 
action at a given state.  

 
Formally, the policy is denoted by π: 

 1,0AS:   
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, where 

S is the set of states 
A is the set of actions  
 
When one develops a military strategy, then appropriate policies should be found that lead 

the team to a winning state. 
 

Reinforcement learning in stochastic games: GraWoLF 
 

Reinforcement learning techniques exist that are capable of finding a strategy for a single 
agent even in the domain of stochastic games. In the domain of team games however, the 
strategy should handle multiple agents (the team controlled by the strategy), and instead of 
returning a single action it should return a list of actions where every action in the list 
corresponds to one agent in the team.  

One reinforcement learning technique that is suitable for stochastic games is the GraWoLF 
(Gradient based Win or Learn Fast) technique [7]. The algorithm is summarized as follows: 

 
1. Let      1,0,1,0,1,0 wl  be learning rates 
Initialize  ,t,,  

Initialize 0e,0,0,0w   

2. Repeat 

(a) 
Select action a from state s according to policy π with suitable exploration using ε. 
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(b) 
Observe reward r and next state s’ 
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(c) 
Update average parameter vector  )1(  

(d) 
If s’ is the initial state or trial is over then 00 ss,0e,tt   

In this pseudo code, α is the learning rate for the approximation of the Q-values. The 
weighting parameter for the maintenance of the average parameter vector is denoted by β. The 
two other learning rates, δl and δw means the step size during gradient ascent when the agent 
is losing or winning, respectively. Parameter λ is influencing the speed of Q-values 
estimation, γ is the discount parameter for the reward formulation, Δt is the length of one 
timestep. Parameter ε is the probability of choosing a random action instead of executing an 
action according to the policy (this is the exploration parameter used in ε-greedy exploration). 

Parameter w is used to approximate the Q-values corresponding to states and actions, this 
is the weighting vector for the approximation function, fw. The actual parameter vector is 
denoted as θ, the average parameter vector with  . The e vector is called the eligibility trace, 
basically it describes the contribution of the state and action pair to the actual error in the 
estimation of the Q-values.  

In step (a), the agent chooses an action according to the actual policy, but with a small 
probability (ε) it chooses a random action from its action list. In step (b), the agent observes 
the new state of the environment (s’) after executing the chosen action and it optionally 
receives a reward signal. After that, the approximations for the Q-values are updated (this 
means updating the weighting vector w and the eligibility vector e). The new parameter vector 
is calculated using the new approximation of the Q-values and the learning parameter is based 
on whether the agent is winning or losing. In step (c), the average parameter vector is 
calculated using β as the learning parameter and using the previous value of the actual and the 
average parameter vector. In step (d), the agent checks whether it is in its starting state or the 
time limit for the learning trial is reached, when the trial is restarted and the state of the 
environment is reset to the initial state and the eligibility vector is nullified. 

This technique is scalable and it is able to find a locally optimal strategy for a single agent 
acting in a stochastic game domain. It requires a Boolean vector describing the state of the 
game (this vector is called the feature vector) as an input and provides a parameter vector as a 
result of learning. The action of an agent can be calculated by using the parameter vector and 
the feature vector. The strategy using the parameter vector calculated with GraWoLF is 



 179 

locally optimal with regards to the reward function. A strategy (π) in this context means a 
mapping from state and action pairs to a number between 0 and 1, which is the probability of 
the agent choosing the given action in a particular state. Formally,  1,0AS:   and as the 
strategy defines a probabilistic distribution over the state-space:  





Aa

1)a,s(Ss  where S is the set of states and A is the set of actions. 

GraWoLF is a gradient ascent technique, meaning that in every learning step it modifies 
the parameter vector in the direction of the positive gradient of the expected reward function 
(note that the goal of the agent is to maximize the expected value of the reward, thus it 
modifies the parameter in the direction of the positive gradient). The step size for the gradient 
ascent technique is chosen according to the Win or Learn Fast principle. Win or Learn Fast 
means that the step size is relatively small if the agent is “winning” and the step size is 
relatively large if the agent is “losing”.  

Winning and losing are determined by comparing the performance to a so called average 
performance (it is impossible though to determine exactly if the agent is winning or losing).  
 
Extending GraWoLF to the domain of team games 

 
Handling multiple agents 
 

GraWoLF in its original form is capable of finding a strategy for a single agent, but in team 
games, an action list for the team is required, where the actions in the list correspond to 
individual agents in the team.  

Handling of multiple agents can be done by using the so called “aggregated agent” 
concept. The aggregated agent concept is a technique that can be used for an arbitrary number 
of agents. It defines an aggregated agent, whose state space is the joint state space of the state 
spaces of the individual agents and the action space of the aggregated agent is the joint action 
space of the action spaces of the individual agents. Every state and action in the state and 
action space of the aggregated agent has a unique identifier assigned, therefore the aggregated 
agent can be treated as a single agent, because it is in one state at a time and executes one 
action at a time (although the state denotes a list of states and the action denotes a list of 
actions).  

The problem with the aggregated agent concept is that the state and the action space 
increases exponentially with additional agents, therefore in order to keep the solution 
tractable, the number of agents in the aggregated agent must be kept small. 

 
Example of an aggregated agent: Two agents with two actions 
 

Assume that there are two agents in the environment; both agents can execute an action 
from an action list which length is 2. The two agents belong to the same team. The action list 
for all agents is {a1, a2}. 

If S1 denotes the state of agent 1 and S2 denotes the state of agent 2, the state of the game 
is described by the joint state space of the agents, S1xS2. 

The action list for agent 1 is denoted by A1, the action list for agent 2 is denoted by A2 
(note that A1=A2={a1, a2}). The action space available for the team, which consists of these 
two agents, is A1xA2 according to the aggregated agent concept. The resulting action list 
available for the team as follows {a1xa1, a1xa2, a2xa1, a2xa2}. 
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Reducing complexity 
 

By using the aggregated agent concept, the size of the state and the action space can easily 
grow to an intractable size. A hierarchy between the agents is defined in order to reduce the 
size of the state and the action space. The agents of the same team are partitioned into 
subgroups, and the subgroups make up the whole team.  

Defining a hierarchy between the agents efficiently reduces the complexity of the 
aggregated agent at every level, because generally there are less groups than units, and from 
the point of view of the team, only the actions for the groups has to be calculated.  

Only the agents in the same group are allowed to communicate, this restriction in the 
communication channels means that the strategy will tend to be sub optimal, but this is a trade 
off between optimality and complexity. Every level in the hierarchy is connected only with at 
most two other levels, it is the responsibility of every level to transform the action received 
from a higher level to an action acceptable to a lower level (this process is called action 
breakdown). 
 
CONCRETE SOLUTION 

 
Hierarchy 
 

In this particular solution, the hierarchy defined within the team has three levels: team 
(strategic level), group (tactical level) and unit level. Basically, the strategic action calculated 
at team level is broken down to a list of tactical level actions applicable to groups in the team, 
and group level actions are broken down into a list of unit level actions. This way a strategic 
action can be broken down to a list of unit level actions, where the commands can be directly 
executed by the units. The levels of the strategy and the process of converting a strategic 
action to a list of unit actions are shown on figure 3. 

 
3. figure. Levels of the strategy [10] 
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The hierarchy is built up using spatial information between the units. The groups are 
created from units that are near each other. The number of groups and the number of agents in 
a group could change dynamically as the agents change their location, but in this particular 
solution the number of agents in a group and the number of groups was fixed, only the actual 
groups were created dynamically. The partitioning of the team members into groups is done 
according to the following algorithm [10]: 

unit /  team neighbors
unit  group group

endif
continue

unit)allocated( if
group

in team unitsforeach 
  groups

GrNumLim DistLim, initialize








 

repeat end
endif

break
GrNumLim  (group) size if

(nearest) Allocatedset 
nearest  group  group

endif
continue

DistLim  (nearest) distance if
endif

continue
nearest)allocated( if

(unit)Neighbor getNearest nearest 
repeat









 
 DistLim: the maximum distance between the units in a group 

 GrNumLim: the maximum number of units in a group.  

 Allocated: If the unit is already assigned to a group 

 The “group”, “groups” and “neighbors” are mathematical sets; the union operation 
means adding a new item (unit) to the set, the subtract operation means removing an 
item (unit) from the set. After running this algorithm, all units are partitioned into 
groups (the variable “groups” will contain the final partitioning), and the distance 
between the units in a group is less than DistLim, and the number of units is less than 
GrNumLim. 

The strategic actions defined in the demonstration game are the Encircle, Retreat, Advance 
and Destroy commands; these are the actions available to the team agent at the highest level. 

The meaning of these commands: 
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 Encircle: The chosen groups that are executing the encircle command are trying to 
encircle the chosen groups of the enemy, meaning that the goal of the action is to 
block the movement opportunities of the opponent groups in as many directions as 
possible 

 Retreat: The group executing the retreat command tries to increase the distance 
between itself and all enemy groups. 

 Advance: The goal of the advancing group is to decrease the distance between itself 
and all enemy groups. 

 Destroy: The group that executes the destroy command tries to kill as many opponent 
units from the chosen opponent group as possible. 

 
At tactical and unit level, the Left, Right, Forward, Shoot commands are available. 
The meaning of these commands: 

 Left: The unit/group turns left. 

 Right: The unit/group turns right. 

 Forward: The unit/group moves forward. 

 Shoot: The unit/group shoots. 
 
Learning at the levels of the hierarchy 
 

Reinforcement learning is used at two parts of the algorithm: at calculating the strategic 
action for the team, and at strategic command breakdown.  

The strategic action calculation part uses GraWoLF in its original form, because the team 
is treated as a single agent which can execute one action at a time. The action set available to 
the team is the set of strategic actions (Encircle, Advance, Retreat, and Shoot); the state of the 
game is represented as the joint state of the teams. This part of learning runs on line, and it is 
the responsibility of the lower hierarchy levels to convert the chosen strategic action to a list 
of unit level actions.  

The strategic command breakdown module is responsible for creating a list of actions 
applicable to groups from a strategic action. As the number of groups in a team is usually 
greater than one, the original form of GraWoLF cannot be used; rather the extension of 
GraWoLF using the aggregated agent is used. 

For every strategic action, at least one reference game is stored in a reference game 
database. In this database, every entry contains a game state and the locally optimal parameter 
vector to be used in that particular game state. The optimal parameter vectors are calculated 
during an off line reinforcement learning session. During this off line learning, the aggregated 
agent concept is used by the learning agent.  

The action set available to the learning agent is generated according to the aggregated 
agent concept, which means that the actions are lists of actions in their inner representation, 
where each list item correspond to a group in the team. These action lists are assigned a 
unique identifier and the learning agent chooses from the set of these identifiers, meaning that 
from the point of view of the learning agent, the problem is single agent reinforcement 
learning in a stochastic game domain, where a locally optimal policy can be calculated using 
GraWoLF. But upon execution of the actions, the chosen action is split (this can be done 
because the action in reality is an action list), and the resulting group actions are executed by 
the groups in the team. 
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Tactical command breakdown is the process of converting a group level action to a list of 
unit level actions. This process is implemented in a predefined way, meaning that the rules for 
the breakdown are not updated during the game and no learning is done at this level of the 
hierarchy.  As the action set available to a group is identical to the action set available to a 
unit, the breakdown is implemented in a simple way: first, the orientation of the agents in the 
same group is made equal to each other, and then all units in the group execute the action sent 
to the group. 

 
SIMULATION RESULT 

 
A simulation environment was developed in Matlab to enable development and evaluation 

of military strategies. The simulator module is the work of Lajos Szarka and Peter Kisfaludi. 
The simulator is capable of simulating a military operation on an arbitrarily sized two-
dimensional map with an arbitrary number of units partitioned into two teams. The module 
simulates the battle in discrete timesteps. The map on which the battle takes place is also 
discretized, thus the location of every unit is also discrete (at every timestep, a unit resides on 
a discrete location called a tile). The orientation of the units is also discretized: it can be any 
of 0, 90, 180 or 270 degrees.  
 
Environment 
 

The environment of the concrete game where the experiments are carried out is a two 
dimensional, discretized map in which multiple units reside. The map is represented by a 
weighted graph, where the nodes of the graph correspond to locations on the map, while the 
edges of the graph represent paths between two locations. 

In the current implementation, the map is a standard grid, where the length of the path 
between any two adjacent nodes is equal to 100. The edges of the graph are weighted, the 
weight of an edge corresponds to the length of the path between the two locations the edge 
connects. 

The state of the environment is made available to the learning agents in discrete timestep, 
and the state update also happens in such fashion. 
 
Objects on the map 
 

Objects on the map can be moving objects or static objects. The static objects are not 
controlled by any of the teams; the moving objects (the units) are assigned to one of the teams 
in the game. Every object on the map occupies exactly one node on the map at a time. 

The possible objects on the map are the following: 
 control point: the control point is a special location on the map which can be owned 

by any of the teams participating in the battle, or it can be neutral, which means that 
none of the teams has possession over the control point. 

 obstacle: obstacles are locations on the map to where tanks cannot move (and control 
points also cannot be located there), although path can lead to nodes which contain 
an obstacle. 

 unit: units are moving objects on the map, they are controlled by one of the teams 
and they are described in detail at Section 4.3. 

 
 
 



 184 

Units 
 

The moving units on the map are tanks, which can move on the edges of the graph and can 
execute actions in their environment. The units can be individually controlled by a team. 
There are two teams present in this environment which battle against each other. All the units 
are identical regarding their properties, they can be described by the same parameters. These 
parameters are the position, orientation, healthpoint. The meaning of these parameters is 

 position: the location of the tank identified by the node on the graph. A unit can 
occupy exactly one node at a time, and at most one unit can reside on a node (this 
restriction also applies to units in the same team). 

 orientation: the angle of the tank, which determines the angle of shooting and on 
which edge the unit can move forward. The orientation of the tank considering that 
the map is a standard grid can be 0, 90, 180 or 270 degrees. 

 health point: the health point of the unit is the number of shots the unit can take 
without being destructed. If the health point of a unit is above zero, the unit can 
execute actions and can move on the map. If the health point of a unit reaches zero, it 
means that the unit is destructed and it cannot execute actions and cannot move. It is 
also removed from the node it resided in, and another unit can occupy that node. 

The available actions for the individual agents are the Left, Right, Forward, Shoot and 
NoOperation (NOP). The meaning of these actions is: 

 Left: the orientation of the unit changes by +90 degrees 

 Right: the orientation of the unit changes by -90 degrees 

 Forward: the unit tries to move to the adjacent node in the direction of its orientation. 
If the adjacent node is an obstacle or there is no adjacent node (because the unit is 
located at the perimeter of the graph) the unit remains on the same node it tried to 
move away from. 

  Shoot: the unit shoots. The angle of the shoot is not deterministic, every tank has a 
spread of shoot and the actual angle of shoot is the orientation of the tank modified 
by a random positive or negative angle between 0 and the half of the maximum angle 
of shoot. The range of shoot is unlimited, and in case of the shoot hits another unit, 
the health point of the unit that was hit is decreased by one. Friendly fire is available, 
i.e. tanks from the same team can also shoot each other. Units cannot shoot through 
obstacles and control points. The path of the bullet that is fired is calculated using the 
actual angle of the shoot. Every discrete location (node) on the map this path 
intersects is tested for hit, by always checking the nearest unchecked tile starting 
from the firing unit. If the path intersects a node that is not empty, the object located 
on the node is considered hit and the bullet stops. If the object is a tank, the tank that 
is hit loses a healthpoint, while in case of obstacle and control points nothing 
happens. The process of determining which object is shot is shown in the following 
pseudocode: 
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 whileend
endif

break
(tank) HP decrease

 tankis obj if
endif

break
Point} control obstacle, {empty, obj if

(node)getObject   obj
(node) setChecked

endif
continue

(node) isChecked if
position) (nodes, nodenearest get  node

nodesin  node unchecked is  therewhile
(path) nodes sectinginterget  nodes

position) (angle,path  calculatepath 
spread) on,(orientati angleshoot  calculate  angle










 

 NOP: the unit does nothing (does not shoot and stays where it was). 
 
Teams 
 

Two teams are present in the concrete game, each team controls four units. The starting 
position of the units is predefined; they are located at opposite sides of the map. The teams 
control their units by means of strategic level actions. The available list of strategic level 
actions is: Encircle, Retreat, Advance and Destroy. The strategic level actions are sent to the 
whole team, and are further broken down to group level actions. The meaning of these 
strategic level actions is as follows: 

 Encircle: The goal of this command is to stall the opponent group and prevent it from 
joining the others group for reinforcement. After executing the Encircle strategic 
action, the expected outcome is that the groups participating in the execution of the 
Encircle command move closer to the targeted opponent group, and they block the 
directions in which the opponent group can move as much as possible. 

 Retreat: The goal of the Retreat strategic level command is to increase the distance 
between the groups owned by the executor of the command and the opponent groups. 
The expected outcome of this strategic level action is that the groups move as far 
away as they can from the opponent groups, even if the opponent groups are 
executing some kind of chasing maneuver, during which they try to decrease the 
distance before the groups. 

 Advance: The goal of the Advance strategic level command is to decrease the 
distance between the controlled groups and the opponent groups. The expected 
outcome of this command is that the controlled groups move as close to the opponent 
groups as possible, thus decreasing the distance between them. The groups should be 



 186 

able to decrease the distance even if the groups belonging to the opponent are 
executing some kind of retreating maneuvers. 

 Destroy: The goal of the Destroy command is to decrease the health point of the units 
in the opponent group. The expected outcome of this strategic level command is that 
the average health point of the opponent group is decreased as much as possible, the 
ideal outcome is when all of the units in the opponent group are destroyed, meaning 
that their health point is decreased to zero. 

A score is maintained for each of the teams, which is initially zero, and it is increased in 
every timestep by the number of control points that are owned by a team at the actual 
timestep.  

The teams are the highest level entities in the game from the point of view of the simulator; 
the actual action processing is done according to Figure 4. 

 
4. figure. Action processing in the simulator 

 
Groups 
 

The maximum number of units in a group was two units. The action list available to a 
group contained the Left, Right, Forward and Shoot actions. A group level action is sent to a 
smaller group of units, and it is further broken down to unit level actions. The meaning of 
these group level actions is: 

 Left: The group turns left, meaning that the individual units in the group change their 
orientation by +90 degrees. 

 Right: The group turns right, meaning that the individual units in the group change 
their orientation by -90 degrees. 

 Forward: The group moves forward, meaning that every unit in the team advances 
one node in the direction of the orientation of the group leader unit. If the orientation 
of the units is not the same in a group, a group leader is selected and the other units 
modify their orientation to match the orientation of the leader. If the orientation of 
every unit in the team is the same, the forward command is executes. The leader of 
the group is selected by choosing the unit that was first assigned to the group.  

 Shoot: Every unit in the group executes the shoot action. 
An example partitioning of the units into groups is shown in Figure 4: 
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5. figure. Example state of the game 

 
The groups created by the group creator module (the group creator module is described in 

detail in Section 3.3.1) for this state of the game were: 
 1st group: units indexed by 1 and 3, the group leader is unit indexed by 1 

 2nd group: units indexed by 2 and 7, the group leader is unit indexed by 7 

 3rd group: units indexed by 4 and 6, the group leader is unit indexed by 4 

 4th group: the unit indexed by 5, which is also the group leader. Note that there are no 
more units in this group. 

 
Results 
 

The concrete demonstration game contained two teams, all teams consisting of four units. 
The teams are placed on opposite sides of the map. The goal of a team is to destroy as many 
adversary units as possible while keeping as many own units alive as possible. The 
performance of a strategy is measured by playing against an opponent with a fixed strategy, 
for example an opponent using random strategy. The performance value is calculated 
according to the following formula: 

 

unitsown#unitsopponent#
unitsown#moreUnit



 

 
This formula returns relatively high values if the team has more units than its opponent and 

relatively low values are returned if the opponent has more units. If the number of units in the 
two teams is the same, the formula returns the neutral 0.5 value (note that values closer to 1 
means that the team of the learning agent outnumbers its opponent team, and values closer to 
0 means its opposite). The actual value of the performance is dependant of the starting 
number of units in each of the teams, but changes in the value show the changes in the power 
relations.  

The state of the game is described as the joint state of the individual units (the state of a 
unit contains its position, orientation and healthpoint) extended with other global features 
(like the value of the moreUnit feature). 

The learning parameters used during learning at the strategic level are shown in Table 1. 
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name value 
α 0.25 
δl 0.1 
δw 0.004 
β 0.8 
λ 0.5 
γ 0.99 
ε 0.05 

1. table. Parameters of GraWoLF during strategic level learning 
 

The detailed description of the parameters can be found in Section 3.1. 
 
Some snapshots from a battle against a random opponent are shown in Table 2. 
 

in step 1, the units are in the starting position in step 3, one of the groups moves to the 
right side of the map. An opponent unit is 

destroyed by friendly fire 

in step 7, a unit is destroyed by the enemy. 
Unit 1 and 2 starts to move upwards 

i
n step 10, unit 1 and 2 are shooting but they 
hit nothing. Unit 4 approaches opponent 1 
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in step 12, unit 2 succeeds in destroying 
opponent 4. Unit 4 destroys opponent 1, but 

receives a shot from opponent 1 

in step 16, unit 2 is destroyed in friendly fire 

in step 21, unit 4 approaches the opponent in step 28, unit 1 destroys the last opponent, 
opponent 3 

2. table. Battle against a random opponent [10] 
 
The performance of the learning agent is measured by the moreUnit feature, and as in the 

initial position the number of units in all teams is the same, the neutral value of the moreUnit 
feature is at 0.5. Three resulting learning curves are shown in the following figures (figure 6, 
7 and 8), two of them correspond to a battle against a random opponent, and one corresponds 
to a battle against a static opponent. 

These learning curves indicate that the learning team agent is able to find a locally optimal 
strategy against either a randomly acting or a static opponent. A policy is said to be good if it 
outperforms the initial policy (which is the random policy at the start of the learning sessions).  

The performance of a final strategy can be measured by the average number of battles that 
are won by using that strategy.  This performance value of a random policy against a random 
opponent is around 50%. If the learning agent can find a final policy that has a better average 
winning number, the strategy is better than the initial, which means that the learning session 
was not useless. 
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6. figure. Value of the moreUnit feature 

against a random strategy [10] 

 
7. figure. Value of the moreUnit feature 

against a random strategy [10] 

 
8. figure. Value of the moreUnit feature against a random strategy [10] 

Figure 8:  
 

CONCLUSION 
 

The proposed solution for military operation planning was able to win an average of 60-65% 
of the games in the demonstrational domain. The solution relies on a spatial relationship 
between the agents and reduces the complexity of the learning algorithms by defining a 
hierarchy amongst the agents.  

The solution efficiently reduces the complexity of the aggregated agent when there are a 
limited number of groups defined in a team. The solution assumes that a locally optimal 
policy can still be found if the communication between the agents is restricted and only the 
agents in the same group coordinate their actions. The experimental results show that the 
agent can learn a policy with which it can outperform a rather strong opponent, but in some 
cases it is possible that the team agent cannot adapt its parameter vector to beat its opponent 
(this is the case for example when the team agent finds a locally optimal solution that has poor 
performance). 

The original form of GraWoLF is able to find a locally optimal policy, and as this 
algorithm is used at both levels of learning in the proposed solution, the hierarchical solution 
guarantees only finding a locally optimal solution. As it can be seen from experiments, if the 
algorithm converges to a local optimum, it usually get stuck in there and the parameter vector 
changes only slightly during consecutive learning steps and cannot move away from the local 
optimum. Therefore the learning has to be restarted several times and strategies with poor 
performance should be eliminated.  
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The GraWoLF technique could be improved by using such a technique that is capable of 
finding a global maximum; and instead of tuning the parameter vector in the direction of the 
gradient, the global maximum finding method can be used. 

The whole learning process could be sped up by reducing the size of the feature vector 
describing the state of the game, because thus the size of the parameter vector will also be 
reduced.  This can be done by defining fewer features (but this way information will be lost) 
or by using some compression technique, like hashing [7]. The run time of the learning 
algorithm can be reduced by doing the hierarchical decomposition less frequently (instead of 
creating groups in every timestep, the creation of groups can be done in say every ten 
timesteps, because agents in the same group tend to remain together).  

A more intelligent group coordination behavior could be achieved using distributed 
rewards [8]. This means that a group of agents does not only observe the global reward signal, 
but they observe also an individual reward. This way the groups will know whether their 
individual performance is influencing the global reward in a positive or a negative way and 
they can individually adapt their behavior to increase the local (individual) reward, and thus 
hopefully increasing the global reward too. If there is only a global reward signal available to 
the groups in the team, one well performing group can make the others believe that they are 
performing well too (or one poorly performing group can reduce the global reward in such a 
way that the other groups believe that they are performing poorly), but by using local rewards 
this problem is solved.   
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