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Absztrakt/Abstract 

 
 
A szerző célja, hogy komplex módszereket mutasson be a dinamikai rendszerek 
modellezésére. Jelen írás az elektromos, mechanikai és elektro-mechanikus 
rendszerekre, vagyis a mechatronikai rendszerekre fókuszál. A matematikai 
modellezés a legfontosabb fázis az automatikus rendszerek elemzésében és azok 
előzetes tervezésében. Szerző a számítógépes elemzés és tervezés területeire 
koncentrál, amely során számos példát mutat be a modellezési és irányítási 
problémák köréből. 
 
Purpose of the author to give a complex set of methods applied for modeling of 
the dynamical systems. The more attention is paid for electrical, mechanical, and 
electro-mechanical systems, i.e. for mechatronical systems. Mathematical 
modeling is the most important phase in automatic systems’ analysis, and 
preliminary design. Author of the paper devotes attention to computer aided 
analysis and design. Examples for this are taken from the wide branch of 
modeling and control problems. 
 
Kulcsszavak/Keywords: dinamikus rendszerek, irányítás, modellezés ~ dynamical 
systems, control, modeling 

I. INTRODUCTION 

Modeling of the dynamical systems is in the focus of attention of scientists since many 
decades. Today there is a main motivation to have necessary information for automated 
control of the dynamical systems. Dynamical systems can be technical (e.g. electrical 
systems, mechanical systems etc.), biological (e.g. blood pressure control, insulin control etc.) 
ones, and also they can represent many other branches of economics, society, sciences etc. 
Dynamical modeling is necessary for computer aided preliminary design, too. There are many 
powerful tools to design a control system for the first possible scheme. 

The designed system must be tested for design criteria, and in case of necessity must be 
re-designed. Purpose of the author is to present a typical set of possible dynamical systems 
applied in Mechatronics, and, in Robotics, too. There are many famous classical examples of 
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Mechanics, theory of electricity, Electrotechnics being involved in this paper to show how to 
get a complex set of dynamical characteristics of them. Solution of the analysis task is 
supported by MATLAB®, by SIMULINK® software, and by theirs toolboxes. 

II. BRIEF HISTORY & LITERATURE OVERVIEW 

Mathematical backgrounds for modeling of deterministic dynamical systems are given 
detailed in [2, 3], and stochastic systems are discussed in [1]. The theory of the control 
systems both for SISO and MIMO applications are outlined in [4, 5, 7, 8, 9]. In general, 
systems and signals are investigated by Pokorádi, L. [12]. Mathematical models of the 
turbulent air are discussed in [6, 10, 11, 14]. Computer aided simulation is supported by 
MATLAB [13]. 

III. MODELLING DYNAMICAL SYSTEMS 

 
3.1. MODELLING OF THE “MASS-SPRING-DAMPER” MECHANICAL SYSTEM. 

 
The dynamical model of the “mass-spring-damper” mechanical system can be seen in Figure 
3.1. [2, 5, 7]. 

 
Figure 3.1. The sketch of the “mass-spring-damper” mechanical system. 

 
Equation of motion of the free vibration system can be derived as [2, 5]: 

iF
dt
md


)v( .      (3.1) 

From Figure 3.1. it is easily can be seen that the resulting damping force is as follows [2, 3, 
5]: 

dt
dxkxFi  .     (3.2) 

In Eq (3.2): kx is the spring force opposing to translational motion of the constant mass, m; 

dt
dx  is the viscous damper wall friction force. Resulting equation of motion of the 

mechanical system as given below: 

02

2
 kx

dt
dx

dt
xdm  .    (3.3) 
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The solution of the second order differential equation (3.3) with constant parameters is given 
in [2, 3] to be as follows: 

tt BeAetx 21)(   ,        (3.4) 

where A and B are constants derived by the initial conditions, 1 , and 2  are solutions of the 
characteristic polynomial of 

02  km  .      (3.5) 

Solving eq (3.5) yields to the following roots [2]: 
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Let us suppose that 0 . For further discussion we suppose that 

A) 2 >4·k·m. In this particular case solutions of the eq (3.5) are real and negative ones, i.e. 

1 <0, 2 <0, 2 > 1 .     (3.7) 

Let us suppose system parameters to be as follows: 

Case a)    2  ;1  ;2  ;1 21  BA .   
 (3.8) 

Case b)    2  ;1  ;2  ;1 21  BA .   
 (3.9) 

Case c)    2  ;1  ;2  ;1 21  BA .             
(3.10) 

 
For systems defined by equations (3.8)-(3.10) computer aided simulation was done, and the 
results can be seen in Figure 3.2, Figure 3.3, and finally, Figure 3.4. 
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Figure 3.2. Case a) 2  ;1  ;2  ;1 21  BA  

 

 
Figure 3.3. Case b) 2  ;1  ;2  ;1 21  BA  
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Figure 3.4. Case c) 2  ;1  ;2  ;1 21  BA  

 
From Figures 3.2.-3.4. it is easily can be derived that the mechanical system behaves 

aperiodically having exponential responses. 
 

B) 2 <4·k·m. In this particular case solutions of the characteristic polynomial (3.5) are 
complex conjugates ones having negative real parts. It is well-known that solution of eq (3.4) 
can be derived as [2, 5]: 
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In eq (3.11) C and D are unity constant parameters depending on initial conditions. Let the 
mechanical system has parameter as given below: 

kgm
m
k

m
 1   ,2   ;1 

         (3.12) 

Substituting equation (3.12) into equation (3.11) yields to the next formula: 

   tetetx tt  75,1sin  75,1cos)(   0,5   0,5       (3.13) 

Results of the computer simulation of equation (3.13) can be seen in Figure 3.5. 
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Figure 3.5. Dynamical System Response (C=1, D=1) 

 
3.2. MODELLING OF THE “MASS-SPRING” MECHANICAL SYSTEM 

CONSTRAINED TO SINUSOIDAL INPUT SIGNAL 
 
The ‘mass-spring’ mechanical system can be seen in Figure 3.6, where l is the spring length in 
the steady-state position; x is the increase of the spring length, m is the mass of body. For 
undamped mechanical system equation of motion can be derived as follows [2, 5]: 

takx
dt

xdm o  sin2

2
        (3.14) 

From Figure 3.6. coordinate of the mass measured from its basic level easily can be 
determined as: 

xltao  sin      (3.15) 

Using Newton’s Second Law dynamic equation (3.14) can be rewritten as: 

0) sin(2

2
 kxxlta

dt
dm o  ,    (3.16) 

or in other manner: 

tFtmakx
dt

xdm oo  sin sin2
2

2
        (3.17) 
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Figure 3.6. The “mass-spring” system. 

 
Solution of the dynamical equation (3.14) can be derived as sum of the solution of the 

homogeneous equation of the linear system (3.14), and a particular solution of the 
inhomogeneous linear equation (3.14). Let find particular solution in the form of the next 
formula: 

tCx  sin  .      (3.18) 

Substituting equation (3.18) into equation (3.17) results in 

oFkCmC  2 .        (3.19) 

From equation (3.19) we have 

2mk
FC o


 .      (3.20) 

Let 
m
k

o   denote the resonance peak frequency of the mechanical system being 

investigated. 
Thus, particular solution (3.18) can be rewritten as: 


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         (3.21) 

Solution of the dynamical equation can be found as 

22
 sin sin cos

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
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o
oo

t
m
FtBtAx ,       (3.22) 

where constants A, and B can be found using initial conditions. Let for 0t  initial conditions 
are as follows: 

1v  ;0)0(
0 




o
tdt

dxx .     (3.23) 

Finally, resulting equation of (3.22) can be derived as [2, 5]: 
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Dynamical system defined by equation (3.24) was constrained to computer simulation. 
Results can be seen in Figure 3.7. 
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Figure 3.7. Mass-spring system displacement 
 

For particular case of o   particular solution of (3.21) does not exist, and instead of 
we try to find this solution in the next form: 

ttCx  cos         (3.25) 

Substituting eq (3.25) into equation (3.14) constant C can be derived as 

tFtkCttCmttCm oooooo  sin  cos cos sin2 2
o      (3.26) 

Suppose that km o 2 , equation (3.26) can be simplified to that of 

o

o

m
FC
2

       (3.27) 

Thus, final form of the solution of equation (3.14) can be derived as: 

tt
m
FtBtAx

o

o
oo  cos

2
 sin cos 


      (3.28) 

The ‘spring-mass’ system is often supplemented with viscous damper, i.e. equation of 
motion (3.14) can be re-written as follows: 

tFkx
dt
dx

dt
xdm o  sin2

2
  .      (3.19) 
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Let find particular solution of the inhomogeneous equation of (3.19) in the following 
manner: 

tbtax  cos  sin   .    (3.20) 

Constants a and b can be found with substitution of eq (3.20) into (3.19), and it yields: 

0
2  )( Fbamk   ,     (3.21) 

0 )( 2  abmk  .     (3.22) 

Solving system of equations (3.21), and (3.22) for coefficients a and b, and substituting 
them into equation (3.20) gives the following formula: 
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It is well-known that final solution of equation (3.1) can be derived as sum of equations 
(3.23), and (3.4). From (3.4) it evident that (3.4) part is goes to zero while time goes to 
infinity, i.e. behavior of the dynamical system determined by eq (3.23). 

IV. MATHEMATICAL MODELS OF THE STOCHASTIC 
CONTINUOUS ATMOSPHERIC DISTURBANCES 

There are two powerful mathematical models of the continuous gust representations. The first 
is, the so-called von Kármán spectrum, which is better fit registrations of the turbulent air 
records. The von Kármán power spectral density (PSD) function is given below as follows [1, 
6, 10, 11]: 
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where L [m] is the gust wavelength, U 1 
0
   [rad/m] is spatial frequency,   [rad/s] is the 

observed angular frequency, and finally,   [m/s] r.m.s. gust velocity. 
The second one, the more favored PSD function is the Dryden PSD function, which can 

be programmed more easily then the von Kármán-model. If there is no structural analysis is 
performed the use of Dryden PSD function is permissible. The Dryden PSD function can be 
defined as given below [1, 6, 10, 11, 14]: 
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Having goal to analyze hypothetical aircraft mathematical models with no interest in 
investigation of the structural behavior and supposing aircraft to be rigid one, the simplest 
mathematical form of the PSD function defined by equation of (4.2) we will use in this article. 
Regarding basic references of [6, 10, 11, 14] one can define PSD functions of the component 
speed of the turbulent air along body axis system of the aircraft, i.e.: 
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For generating random signals with the required intensity, scale length, and PSD functions 
for given speed and height of the flight, a hypothetical wide-band noise generator with PSD 
function of )(N  must be used to provide signal with the linear filter, chosen such that it 
has an appropriate frequency response so that the output signal from the linear filter will have 
a PSD function of )(i  (see Figure 4.1.) [6]: 
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If the white noise source is chosen so that its power spectrum is similar to that of called 
‘white’ noise one can write that 

1)(  N .           (4.10) 

 
Figure 4.1. Block Diagram for Generating Stochastic Signals. 

Substituting equation (4.10) into equation of (4.9) result the following formula 
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The linear filter transfer functions of )(sGi  are given in [6] to be: 
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It is easily can be derived that substitution equations (4.12)–(4.15) into equation (4.9) 
results in the PSD functions of the Dryden-models’s PSD-functions of (4.6)–(4.8). If the air 
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turbulence model is used for analysis of its effects on flight of the small UAV aircraft let the 
initial parameters be as they are given below: 

hkmsmUfeetmH /  90/  25   ; 084,328 100 0  2.  (4.16) 

From equations (4.13)–(4.15) it is evident that for derivation of transfer functions of the 
linear filters defined by equation (4.12) it is necessary to know turbulence scale of iL , and 
turbulence intensity of i , measured along appropriate axis of the given coordinate system. 
Let us consider NASA-parameters taken from [6, 10] to be as follows: 

 along longitudinal (OX) axis: smsm u / 85,0/ 4,3       (4.17) 
 along lateral (OY) axis: smsm v / 7,0/ 8,2   ,      (4.18) 
 along vertical (OZ) axis: smsm w / 45,0/ 8,1   .      (4.19) 

For extreme weather conditions (thunderstorm) MCLEAN [6] suggests turbulence 
intensities as they given below: 

smwvu / 7  .    (4.20) 
Turbulence integral scale lengths iL  of the low altitude turbulence models for 

feethfeet  1000 10   can be derived using following formulas [6, 10]: 

2,1 )000823,0177,0(
2

h
hLL vu 

 ,  hLw  5,0 .   (4.21) 

Regarding MCLEAN, for extreme weather conditions (thunderstorm) one can apply 
following integral scale lengths given in [6]: 

mLLL wvu  580 .    (4.22) 
Constant speed components of the turbulent air are given in military standards of [4, 7] as 

function of theirs exceedance. For the low altitude random turbulence models intensity of the 
turbulence, w  can be measured as [6, 11, 14]: 

20 1,0 uw  ,          (4.23) 
where 20u  is constant longitudinal component speed of the turbulent air measured at the 
altitude of feeth  20 . Using equations of (4.21)–(4.22) integral scale lengths of the air 
turbulence were found and they are summarized in Table 1. 
 

Table 1. Integral scale lengths at altitude of feetmH  084,328 100  . 

Scale length, [m] Nominal (Nom) Extreme (Thunderstorm) 

u L  862,185497 feet  262,7941311 m 580 

uLL  5,0v   431,0927485 feet  131,3970655 m 580 

w L  50 580 

 
Using equations of (4.17)–(4.20) turbulence intensities were found and they are 

summarized in Table 2. 
 

 

                                                
2 1 foot  0,3048 m — 1 m  3,28084 feet 
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Table 2. Turbulence intensities. 

Turbulence intensities NASA-Min (Min) NASA-Max 
(Max) 

Extreme 
(Thunderstorm) 

u  , [m/s] 0,85 3,4 7 

 v , [m/s] 0,7 2,7 7 

w  , [m/s] 0,45 1,8 7 

 
Constant longitudinal component speed of the turbulent air, called 20u , were found using 

military standard of [10], and using equations of (4.21)–(4.22). Constant speed of 20u  are 
summarized in Table 3. 

 
Table 3. Constant speed of 20u . 

Turbulent Air Characteristics NASA-Min (Min) NASA-Max (Max) Extreme 
(Thunderstorm) 

20w  1,0 u , [m/s] 0,45 1,8 7 

20u , [m/s] – [km/h] 4,5 – 16,2 18 – 64,8 70 – 252 

 
Linear transfer functions defined by equations (4.12) having parameters given by 

equations of (4.13)–(4.15), and satisfying conditions derived by equations (4.16)–(4.24), and 
considering weather conditions given by Table 1., and Table 2, can be determined, and they 
can be found in the following tables given below [11, 14]: 

 
Table 3. Parameters of the linear filters providing longitudinal 

speed component of the air turbulence, )(u g t . 

Filter Parameters 

Weather Conditions 
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NASA-Min 0,043756496 0,095131547 

NASA-Max 0,700103937 0,095131547 

Extreme (Thunderstorm) 1,344584864 0,043103448 
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Table 4. Parameters of the linear filters providing lateral 
speed component of the air turbulence, )(v g t . 

Filter Parameters 

Weather Conditions 

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 v
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NASA-Min 0,089027057 0,109848449 0,190263095 
NASA-Max 1,324504595 0,109848449 0,190263095 

Extreme 
(Thunderstorm) 

8,902705783 0,024885787 0,043103448 

 
Table 5. Parameters of the linear filters providing vertical 

speed component of the air turbulence, )(w g t . 

Filter Parameters 

Weather Conditions 
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NASA-Min 0,096686627 0,288675134 0,5 
NASA-Max 1,546986047 0,288675134 0,5 

Extreme 
(Thunderstorm) 

2,016877296 0,024885787 0,043103448 

 
Using parameters of Table 3, Table 4, Table 5, transfer functions of the linear filters 

defined by equation (4.12) can be derived as follows [11, 14]: 
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03620,0 38052,0
10984,0s  15087,1)( 2vg 




ss
sGMax ,        (4.25-2) 

00186,0 08620,0
02488,0s  98374,2)( 2vg 




ss
sGExtr       (4.25-3) 

25,0
28867,0s  31094,0)( 2wg 




ss
sGMin ,                  (4.26-1) 

25,0
28867,0s  24377,1)( 2wg 




ss
sGMax            (4.26-2) 
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00185,0 08620,0
02488,0s  42016,1)( 2wg 




ss
sGExtr         (4.26-3) 

 
Using linear transfer function models of equations (4.24)–(4.26) it is easy to generate 

random time series with given statistical parameters, which can be applied both for 
identification, modeling, analysis and design purposes [6, 10, 11, 14]. 

4.1. RESULTS OF THE COMPUTER SIMULATION 

Using principle derived by Figure 1., and using transfer functions of the linear filters defined 
for several weather conditions one can generate computer code for solution of this problem. In 
our preliminary study we have used MATLAB® R2009 [13]. Regarding mathematical models 
of the random air outlined in Chapter 4 all components of the speeds of the turbulent air 
measured along axes of the aircraft body-axis system, and they will be presented in the next 
sections. 

4.1.1. RANDOM LONGITUDINAL SPEED COMPONENT OF THE TURBULENT AIR 

The longitudinal speed component is very important from the point of view of the basic flight 
conditions, i.e. aircraft flight is limited with its minimum longitudinal speed of, say, minu . 
From Chapter 3 it is known that equilibrium speed of the hypothetical UAV aircraft is 

m/suo  25 . Result of the computer simulation can be seen in Figure 4.2. 
 

From Figure 4.2, it is easily can be determined that in time domain of (50÷100) seconds, 
in other words, in the root of the turbulent zone, the mean value of the longitudinal speed is 
approximately, m/sumean  2,4 , which is 16,8 % of that of the equilibrium one. There is a 
question arising from analysis of the characteristics of the longitudinal speed component 
direction, i.e. it can be coinciding one to that of the mean direction of the flight, or it can 
oppose aircraft flight 

 
In other words, longitudinal speed component of the turbulent air can be called for head-

wind, or, tail wind. Going that way, longitudinal speed of the aircraft flying through 
atmospheric turbulence can be derived as follows: 

 
for “head-wind”: m/suuu meanohead  20,84,2 25  ,          (4.27) 

for “tail wind”: m/suuu meanotail  29,24,2 25  .        (4.28) 
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Figure 4.2. Longitudinal Speed Component of the Stochastic Air. 

 

4.1.2. RANDOM LATERAL SPEED COMPONENT OF THE TURBULENT AIR. 

Using the same manner as it was shown in previous section, computer code for random lateral 
speed component of the turbulent air was generated, and results of the computer simulation 
can be seen in Figure 4.3. From Figure 4.3. it is easily can be seen that in the time domain of 
about (50÷100) seconds, the mean values of the lateral speed are: 

smv / 7,1max  , smv / 5,0min  .    (4.3) 

If to suppose weather conditions having statistical parameters between weather conditions 
of NASA-Min, and NASA-Max, it can be supposed that mean value of the lateral speed is, 
approximately, of 1 m/s. 

 
Figure 4.3. Lateral Speed Component of the Stochastic Air. 
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It means that during flight aircraft changes it lateral coordinate for about 4 m in one 
second. 
If to take into consideration the free-flight of the aircraft, or even if in normal flight aircraft 
“pilot” does not corrects the lateral coordinate, in 50 seconds time period, being investigated 
above, aircraft maintains distance of 1250 m, changing its lateral coordinate for 200 m. It is 
obvious, that there is a strong need to compensate lateral deviation measured from the flight 
direction. 

4.1.3. RANDOM VERTICAL SPEED COMPONENT OF THE TURBULENT AIR. 

Random vertical speed of the turbulent air is very important from many aspects of the altitude 
control of the aircraft, from the point of view of the modeling of the aeroelastic structural 
motion of the fuselage, and wings. There are many other reasons highlighting importance of 
the knowledge of the stochastic vertical speed of the atmospheric turbulences. Results of the 
computer simulation including NASA-Min, and NASA-Max weather conditions can be seen 
in Figure 4.4. From Figure 4.4. it is easily can be seen that in the time domain of about 
(50÷100) seconds, the mean values of the vertical speed are as follows: 

smw / 7,0max  , smw / 2,0min  .    (4.4) 

It to take mean value of the vertical random speed of the wind to be of 0,5 m/s, during 
flight aircraft changes it altitude for 1,8 m per second. For the free-flight of the aircraft, or 
even if in normal flight aircraft “pilot” does not corrects the height of the flight, in 50 seconds 
time period, being investigated above, aircraft maintains distance of 1250 m, changing its 
height of the flight for 90 m, to that of the initial of mHo  100 . It means that having no 
control on aircraft altitude, in turbulent air aircraft nearly duplicates its height of the flight. It 
is obvious, that height of the flight must be controlled, and altitude must be kept at its constant 
value. 

 
Figure 4.4. Vertical Speed Component of the Stochastic Air. 

 

 



 358 

4.1.4. RESULTS OF THE COMPUTER SIMULATION OF THE ATMOSPHERIC 
TURBULENCES FOR THE ”NASA-MIN” WEATHER CONDITIONS 

Using results of the previous computer simulation, for “NASA-Min” weather conditions all 
appropriate time series of the longitudinal, lateral, and vertical components of the random air 
were plot in one, common coordinate system, and they can be seen in Figure 4.5. 

 
Figure 4.5. Results of the Computer Simulation for “NASA-Min” Weather Conditions. 

 

 

4.1.5. RESULTS OF THE COMPUTER SIMULATION OF THE ATMOSPHERIC 
TURBULENCES FOR THE ”NASA-MAX” WEATHER CONDITIONS 

Using results of the computer simulation made before, for “NASA-Max” weather conditions 
all appropriate time series of the longitudinal, lateral, and vertical components of the random 
air were plot in one, common coordinate system, and they can be seen in Figure 4.6. 
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Figure 4.6. Results of the Computer Simulation for “NASA-Max” Weather Conditions. 

 
From Figure 4.6. it is easily can be derived that longitudinal speed component, )(tug , of 

the atmospheric turbulence has largest mean value. It is evident that for head-wind weather 
conditions, there is exists a maximum value of the longitudinal random speed, )(

max
tug , which 

is allowed to avoid stalling of the aircraft. 

4.1.6. RESULTS OF THE COMPUTER SIMULATION OF THE ATMOSPHERIC 
TURBULENCES FOR THE ”EXTREME – THUNDERSTORM” 

WEATHER CONDITIONS 

Result of these computer simulations are mainly hypothetical, however, it is necessary to 
know how extreme air masses are moving. These results are very important although from the 
point of view of the flight achieved beyond visual range for large distances, when there are 
big differences between weather conditions at arrival and departure airfields. Result of the 
computer simulation can be seen in Figure 4.6. 

The most important result is that atmospheric turbulence has largest value in the mean of 
lateral component of the turbulent air. The other important statement coming form this 
analysis, that if to consider maximum value of the longitudinal head-wind to be of 

smtu headg / 5)(_  , this maximum value is reached at about 5 seconds of the computer-aided 
simulation. It means that to avoid stalling of the aircraft it is necessary to compensate 
decrease of the longitudinal speed of the aircraft increasing throttle, or it is necessary to 
maintain maneuver to keep given flight parameters in the defined flight envelope of the given 
type of the aircraft. 
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Figure 4.6. Results of the Computer Simulation for “Extreme” Weather Conditions. 

 
The most important result is that atmospheric turbulence has largest value in the mean of 
lateral component of the turbulent air. The other important statement coming form this 
analysis, that if to consider maximum value of the longitudinal head-wind to be of 

smtu headg / 5)(_  , this maximum value is reached at about 5 seconds of the computer-aided 
simulation. It means that to avoid stalling of the aircraft it is necessary to compensate 
decrease of the longitudinal speed of the aircraft increasing throttle, or it is necessary to 
maintain maneuver to keep given flight parameters in the defined flight envelope of the given 
type of the aircraft. 
 

V. SUMMARY 
Mathematical models are widely used during preliminary analysis, identification, and design 
of the automatic control systems. They can be both deterministic and random ones, regarding 
theirs time domain behavior. They support system description whether it is continuous, or 
discrete. Modeling of dynamical systems is supported by many computer packages e.g. 
MATLAB®, SIMULINK®, and theirs toolboxes. 

 

OPUS CITATUM 

[1] Korn, G. A. Random-Process Simulation and Measurements, McGraw-Hill Book 
Company, 
New York – Toronto – London – Sydney, 1966. 

[2] Kármán, T. – Biot, A. M. Matematikai módszerek műszaki feladatok megoldására, 
Műszaki Könyvkiadó, Budapest, 1967. 

[3] Korn, G. A. – Korn, T. M. Matematikai módszerek műszakiaknak, Műszaki Könyvkiadó, 
Budapest, 1975. 

                                                



 361 

[4] Kuo, B. C. Automatic Control Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 
1982. 

[5] Ogata, K. Modern Control Engineering, Prentice-Hall International Inc., Englewood 
Cliffs, New Jersey, 1990. 

[6] McLean, D. Automatic Flight Control Systems, Prentice-Hall, Int., New York – London – 
Toronto – Sydney – Tokyo – Singapore, 1990. 

[7] Dorf, R. C. – Bishop, R. H. Modern Control Systems, Prentice Hall International, Upper 
Saddle River, New Jersey, 2001. 

[8] Stefani, R. T. – Shahian, B. – Savant Jr., C. J. – Hostetter, G. H. Design of Feedback 
Control Systems, Oxford University Press, New York-Oxford, 2002. 

[9] Nise, N. S. Control Systems Engineering, John Wiley & Sons, Inc., 2004. 

[10] MIL–STD–1797A, Notice 3, Flying Qualities of Piloted Aircraft, Department of Defense, 
Interface Standard, 2004. 

[11] Szabolcsi, R. Mathematical Models for Gust Modeling Applied in Automatic Flight 
Control Systems’ Design, CD-ROM Proceedings of the “5th International Conference in 
the Field of Military Sciences 2007”, 13-14 November 2007, Budapest, Hungary. 

[12] Pokorádi, L. Jelek és rendszerek modellezése, Campus Kiadó, Debrecen, 2008. 

[13] MATLAB® 7 Getting Started Guide, The MathWorks, Inc., 2009. 
[14] Szabolcsi, R. Stochastic Noises Affecting Dynamic Performances of the Automatic Flight 

Control Systems, Review of the Air Force Academy, No1/2009, pp(23-30), ISSN 1842-
9238, Brasov, Romania. 


